Ad Under Header

EN: Suppose a and b are integers. Choose all correct statements. ID: Misalkan a dan b adalah bilangan-bilangan bulat. Pilihlah semua pernyataan yang benar. EN: If 17a +33 is even, then a is even ID: Jika 17a +33 genap, maka a genap EN: If 5a23 is odd, then a is even ID: Jika 5a2 - 3 ganjil, maka a genap EN: If a²-2a is even, then a is odd ID: Jika a²-2a genap, maka a ganjil EN: If a² + 4a -3 is odd, then a is even ID: Jika a² + 4a - 3 ganjil, maka a genap EN: If -3a²- 7 is odd, then a is even ID: Jika -3a²-7 ganjil, maka a genapSee answer

EN Suppose a and b are integers Choose all correct statements ID Misalkan a dan b adalah bilangan bilangan bulat Pilihlah semua pernyataan yang benar EN If 17a 33 is even then a is even ID Jika 17a 33…

Question

user submitted image, transcription text available below

EN: Suppose a and b are integers. Choose all correct statements. ID: Misalkan a dan b adalah bilangan-bilangan bulat. Pilihlah semua pernyataan yang benar. EN: If 17a +33 is even, then a is even ID: Jika 17a +33 genap, maka a genap EN: If 5a23 is odd, then a is even ID: Jika 5a2 – 3 ganjil, maka a genap EN: If a²-2a is even, then a is odd ID: Jika a²-2a genap, maka a ganjil EN: If a² + 4a -3 is odd, then a is even ID: Jika a² + 4a – 3 ganjil, maka a genap EN: If -3a²- 7 is odd, then a is even ID: Jika -3a²-7 ganjil, maka a genap

Super Answer 1 people found it helpful

Correct Answer:

A, D, E

Analyzing the Answer:

Let’s analyze each statement:

A) If 17a + 33 is even, then a is even

  • 17a + 33 = even
  • 17a = even – 33
  • Since 33 is odd, 17a must be odd
  • For 17a to be odd, a must be even (odd × even = even)
    Therefore, this statement is TRUE

B) If 5a² – 3 is odd, then a is even

  • 5a² – 3 = odd
  • 5a² = odd + 3 (even)
  • 5a² must be even
  • a² must be even
  • a must be odd (because square of even is even, square of odd is odd)
    Therefore, this statement is FALSE

C) If a² – 2a is even, then a is odd

  • a² – 2a = even
  • a(a – 2) = even
  • Both a and (a-2) must be even, or both must be odd
  • This can be true for both even and odd values of a
    Therefore, this statement is FALSE

D) If a² + 4a – 3 is odd, then a is even

  • a² + 4a – 3 = odd
  • a² + 4a = even
  • a(a + 4) = even
  • For this to be even, a must be even
    Therefore, this statement is TRUE

E) If -3a² – 7 is odd, then a is even

  • -3a² – 7 = odd
  • -3a² = even
  • a² must be even
  • Therefore, a must be even
    Therefore, this statement is TRUE

Analysis of other options:

B: Incorrect because when 5a² – 3 is odd, a must be odd, not even
C: Incorrect because a² – 2a can be even for both odd and even values of a

Posting Komentar