Ad Under Header

Determine whether each set of ordered pairs represents a function or not. Put mark on the appropriate column. Determine also the number of points that intersect any cal line. Set of Ordered Pairs Function Not Function Number of Points that Intersect a Vertical Line 1. {(4, 0), (4, 1), (4, 2)} 2. {(0, -2), (1, 1), (3, 7), (2, 4)} 3. {(-2, 2), (-1, 1), (0, 0), (1, 1)} 4. {(-2, 8), (-1, 2), (0, 0), (1, 2), (2, 8)} 5. {(3, 3), (0, 0), (-3, 3)} 6. {(-2, 0), (-1, √3), (-1, -√3), (0, 2), (0, -2), (1, √3), (1, -√3), (2, 0)}See answer

Determine whether each set of ordered pairs represents a function or not Put mark on the appropriate column Determine also the number of points that intersect any cal line Set of Ordered Pairs…

Question

user submitted image, transcription text available below

Determine whether each set of ordered pairs represents a function or not. Put mark on the appropriate column. Determine also the number of points that intersect any cal line. Set of Ordered Pairs Function Not Function Number of Points that Intersect a Vertical Line 1. {(4, 0), (4, 1), (4, 2)} 2. {(0, -2), (1, 1), (3, 7), (2, 4)} 3. {(-2, 2), (-1, 1), (0, 0), (1, 1)} 4. {(-2, 8), (-1, 2), (0, 0), (1, 2), (2, 8)} 5. {(3, 3), (0, 0), (-3, 3)} 6. {(-2, 0), (-1, √3), (-1, -√3), (0, 2), (0, -2), (1, √3), (1, -√3), (2, 0)}

Basic Answer

Step 1: Determine if Each Set of Ordered Pairs Represents a Function

A set of ordered pairs represents a function if each x-value corresponds to exactly one y-value. If an x-value appears more than once with different y-values, it is not a function.

Step 2: Count the Number of Points that Intersect a Vertical Line

For each set of ordered pairs, count how many points have the same x-value. This number indicates how many points intersect any vertical line.

Step 3: Fill in the Table

Set of Ordered PairsFunctionNot FunctionNumber of Points that Intersect a Vertical Line
1. {(4, 0), (4, 1), (4, 2)}3
2. {(0, -2), (1, 1), (3, 7), (2, 4)}1
3. {(-2, 2), (-1, 1), (0, 0), (1, 1)}1
4. {(-2, 8), (-1, 2), (0, 0), (1, 2), (2, 8)}1
5. {(3, 3), (0, 0), (-3, 3)}1
6. {(-2, 0), (-1, √3), (-1, -√3), (0, 2), (0, -2), (1, √3), (1, -√3), (2, 0)}2

Final Answer

The table above indicates whether each set of ordered pairs represents a function or not and the number of points that intersect any vertical line.

Posting Komentar